
QuickCheck for VDM
Nick Battle, Markus Ellyton

Proof Obligations

● QuickCheck is a new tool to help analyse proof obligations (POs)

● POs highlight where undefined results could occur or conditions must hold
● Short VDM-SL boolean expressions, which should always be true
● Produced by VDMTools and Overture/VDMJ for many years
● But no proof support available until recently

● Isabelle plugin can translate and discharge some POs
● Powerful, but sophisticated, requiring expertise and multiple tools
● Ideally, we want seamless integration of proof support in our VDM tools
● QuickCheck plugin attempts to perform a fast, lightweight check of POs

Proof Obligations

It would be useful if we could quickly divide obligations into three categories:

● Those that can be disproved ("failed" with a counterexample)
● Those that are very likely to be true ("probably provable")
● Those that are neither of the above ("maybe valid")

A direct evaluation of the PO expression may help?

But we have to be careful about LPF/McCarthy logic!

Proof Obligations: Check by Execution?
fbool: set of bool -> real
fbool(s) ==
 if s <> {}
 then 1 / card s <-- potential divide by zero?
 else 0;

fbool: non-zero obligation in 'DEFAULT' (test.vdmsl) at line 16:16
(forall s:set of bool &
 ((s <> {}) =>
 (card s) <> 0))

> print (forall s:set of bool & ((s <> {}) => (card s) <> 0))
= true
Executed in 0.002 secs.

Proof Obligations: Check by Execution?
fbool: set of bool -> real
fbool(s) ==
 1 / card s; <-- potential divide by zero?

fbool: non-zero obligation in 'DEFAULT' (test.vdmsl) at line 16:16
(forall s:set of bool &
 (card s) <> 0)

> p (forall s:set of bool & (card s) <> 0)
= false
Executed in 0.002 secs.

Proof Obligations: Check by Execution?
fnat: set of nat -> real
fnat(s) ==
 if s <> {}
 then 1 / card s <-- potential divide by zero?
 else 0;

fnat: non-zero obligation in 'DEFAULT' (test.vdmsl) at line 10:16
(forall s:set of nat &
 ((s <> {}) =>
 (card s) <> 0))

> print (forall s:set of nat & ((s <> {}) => (card s) <> 0))
Error 4: Cannot get bind values for type nat in 'DEFAULT' (console) at line 1:2
MainThread>

Proof Obligations: Check by Execution?
● So the VDMJ interpreter can evaluate POs, but not that helpful by itself

● But we can tweak the interpreter (as a special case, in POs):
○ to allow finite subsets of infinite types to be checked in forall/exists
○ to remember counterexample/witness values

● PO generate/eval wrapped up in a command called "quickcheck" (abbr. "qc")
○ The objective is to find counterexamples or witnesses by evaluation
○ And some cases may be "probably provable" by simple checks

● But which subset of infinite type bind values do we choose?
○ Several different strategies are possible - so pluggable
○ Either return type bindings to try, or an indication of (dis)proof

QuickCheck Strategies

● A strategy is passed:
○ the PO (its AST)
○ a list of its type binds
○ an execution Context (eg. for evaluating type invariants)

● A strategy returns:
○ type bind value lists (that might be counterexamples or witnesses)
○ a "hasAllValues" flag if all of the bindings' values were generated
○ a (dis)proved flag and message, if it is able to conclude this

● QuickCheck applies all enabled strategies, then evaluates the PO, looking for
counterexamples (unless a strategy has claimed the PO is provable).

QuickCheck Built-in Strategies

Six strategies are built-in:

● The fixed strategy - returns a fixed set of values for every VDM type
● The random strategy - similar to fixed, but using a pseudo-random number generator
● The trivial strategy - looks for "trivial" forms, like <expression> => <expression>
● The finite strategy - checks whether all bindings are of finite types (and not too big)
● The search strategy - looks for eg. "x <> 0" then returns "x = 0" (naively)
● The direct strategy - ignores the PO itself, but looks at what it is trying to verify

More strategies can be added by putting a jar on the classpath.

QuickCheck Example - "qc" (VDMJ)
> qc
PO #1, PROVABLE by direct (body is total) in 0.002s
PO #2, FAILED (unsatisfiable) in 0.001s

T: invariant satisfiability obligation in 'DEFAULT' (test.vdm) at line 3:9
exists t : set of bool & ((card t) = 3)

PO #3, PROVABLE by direct (body is total) in 0.0s
PO #4, PROVABLE by witness q = 11 in 0.001s
PO #5, PROVABLE by trivial s <> [] in 0.001s
PO #6, PROVABLE by direct (body is total) in 0.0s
PO #7, MAYBE in 0.001s
PO #8, MAYBE in 0.001s
PO #9, FAILED in 0.002s: Counterexample: r = 1.25

h: subtype obligation in 'DEFAULT' (test.vdm) at line 16:5
(forall r:real & pre_h(r) =>
 is_nat(r))

>

QuickCheck Example - "qr" (VDMJ)

> qr 9
=> print h(1.25)
Error 4065: Value 1.25 is not a nat in 'DEFAULT' (console) at line 1:1

> qr 2
=> print exists t : set of bool & ((card t) = 3)
= false

QuickCheck: Polymorphic Functions
-- @QuickCheck @T = set of nat, set of bool;
f[@T]: seq of @T * nat -> @T
f(s, i) == s(i);

Proof Obligation 1: (Unproved)
f: sequence apply obligation in 'DEFAULT' (test.vdmsl) at line 4:16
(forall s:seq of (@T), i:nat &
 i in set inds s)

> qc 1
PO #1, FAILED in 0.003s: Counterexample: i = 0, s = [], T = set of (nat)

f: sequence apply obligation in 'DEFAULT' (test.vdmsl) at line 4:16
(forall s:seq of (@T), i:nat &
 i in set inds s)

> qr 1
=> print f[set of (nat)]([], 0)
Error 4064: Value 0 is not a nat1 in 'DEFAULT' (test.vdmsl) at line 4:16
4: f(s, i) == s(i);

QuickCheck Example - VDM-VSCode

Performance
VDM-SL VDM++ VDM-RT Totals %age

Specs # 50 51 13 114
PO # 4964 2830 435 8229
PROVABLE 878 323 37 1238 15.04%
by trivial 141 91 3 235 2.86%
by finite 227 135 16 378 4.59%
by witness 109 30 7 146 1.77%
by direct 401 67 11 479 5.82%
MAYBE 2077 781 108 2966 36.04%
FAILED (counterexample) 942 128 5 1075 13.06%
UNCHECKED 1057 1598 285 2940 35.73%
TIMEOUT (5s) 10 0 0 10 0.12%

100.00%

VDM-SL VDM++ VDM-RT Average (ms)
PROVABLE 4.06 4.37 1.7 3.38
FAILED 10.41 3.11 11.2 8.24
MAYBE 45.5 49.28 13.34 36.04

Future Directions
● More strategies?

○ Translate the PO to SMT-LIB (perhaps via Dafny)?
○ Strategies could return a proved status
○ Maybe use ML to identify counterexamples?

● Improved analysis for UNCHECKED operation POs?
○ Include relevant state in obligations
○ VDM++ and VDM-RT are a challenge

● Better polymorphic type selection?
○ Better checking of highly polymorphic specifications
○ Sensibly selecting type parameters to check

