QuickCheck for VDM

Nick Battle, Markus Ellyton

Proof Obligations

QuickCheck is a new tool to help analyse proof obligations (POs)

POs highlight where undefined results could occur or conditions must hold
Short VDM-SL boolean expressions, which should always be true
Produced by VDMTools and Overture/VDMJ for many years

But no proof support available until recently

Isabelle plugin can translate and discharge some POs

Powerful, but sophisticated, requiring expertise and multiple tools
Ideally, we want seamless integration of proof support in our VDM tools
QuickCheck plugin attempts to perform a fast, lightweight check of POs

Proof Obligations

It would be useful if we could quickly divide obligations into three categories:

e Those that can be disproved ("failed" with a counterexample)
e Those that are very likely to be true ("probably provable")
e Those that are neither of the above ("maybe valid")

A direct evaluation of the PO expression may help?

But we have to be careful about LPF/McCarthy logic!

Proof Obligations: Check by Execution?

fbool: set of bool -> real

fbool (s) ==
if s <> {}
then 1 / card s <-- potential divide by zero?
else 0;

fbool: non-zero obligation in 'DEFAULT' (test.vdmsl) at line 16:16
(forall s:set of bool &
((s <> {}) =>
(card s) <> 0))

> print (forall s:set of bool & ((s <> {}) => (card s) <> 0))
= true
Executed in 0.002 secs.

Proof Obligations: Check by Execution?

fbool: set of bool -> real
fbool (s) ==
1 / card s; <-- potential divide by zero?

fbool: non-zero obligation in 'DEFAULT' (test.vdmsl) at line 16:16
(forall s:set of bool &
(card s) <> 0)

> p (forall s:set of bool & (card s) <> 0)
= false
Executed in 0.002 secs.

Proof Obligations: Check by Execution?

fnat: set of nat -> real

fnat(s) ==
if s <> {}
then 1 / card s <-- potential divide by zero?
else 0y

fnat: non-zero obligation in 'DEFAULT' (test.vdmsl) at line 10:16
(forall s:set of nat &
((s <> {}) =>
(card s) <> 0))

> print (forall s:set of nat & ((s <> {}) => (card s) <> 0))
Error 4: Cannot get bind values for type nat in 'DEFAULT' (console) at line 1:2
MainThread>

Proof Obligations: Check by Execution?

e So the VDMJ interpreter can evaluate POs, but not that helpful by itself

e But we can tweak the interpreter (as a special case, in POs):

o to allow finite subsets of infinite types to be checked in forall/exists
o to remember counterexample/witness values

e PO generate/eval wrapped up in a command called "quickcheck" (abbr. "qc")

o The objective is to find counterexamples or witnesses by evaluation
o And some cases may be "probably provable" by simple checks

e But which subset of infinite type bind values do we choose?
o Several different strategies are possible - so pluggable
o Either return type bindings to try, or an indication of (dis)proof

QuickCheck Strategies

e A strategy is passed:

o the PO (its AST)
o alist of its type binds
o an execution Context (eg. for evaluating type invariants)

e A strategy returns:
o type bind value lists (that might be counterexamples or withesses)
o a"hasAllValues" flag if all of the bindings' values were generated
o a (dis)proved flag and message, if it is able to conclude this

e QuickCheck applies all enabled strategies, then evaluates the PO, looking for
counterexamples (unless a strategy has claimed the PO is provable).

QuickCheck Built-in Strategies

Six strategies are built-in:

The fixed strategy - returns a fixed set of values for every VDM type

The random strategy - similar to fixed, but using a pseudo-random number generator
The trivial strategy - looks for "trivial" forms, like <expression> => <expression>

The finite strategy - checks whether all bindings are of finite types (and not too big)
The search strategy - looks for eg. "x <> 0" then returns "x = 0" (naively)

The direct strategy - ignores the PO itself, but looks at what it is trying to verify

More strategies can be added by putting a jar on the classpath.

QuickCheck Example - "qc" (VDMJ)

> gc

PO #1, PROVABLE by direct (body is total) in 0.002s
PO #2, FAILED (unsatisfiable) in 0.001ls

T: invariant satisfiability obligation in 'DEFAULT'
exists t : set of bool & ((card t) = 3)

PO #3, PROVABLE by direct (body is total) in 0.0s
PO #4, PROVABLE by witness g = 11 in 0.001s

PO #5, PROVABLE by trivial s <> [] in 0.001s

PO #6, PROVABLE by direct (body is total) in 0.0s
PO #7, MAYBE in 0.001s

PO #8, MAYBE in 0.001ls

PO #9, FAILED in 0.002s: Counterexample: r = 1.25

(test.vdm)

h: subtype obligation in 'DEFAULT' (test.vdm) at line 16:5

(forall r:real & pre h(r) =>
is nat(r))

at line 3:9

QuickCheck Example - "gr" (VDMJ)

>qgr 9
=> print h(1.25)
Error 4065: Value 1.25 is not a nat in 'DEFAULT' (console) at line 1:1

> gr 2
=> print exists t : set of bool & ((card t) = 3)
= false

QuickCheck: Polymorphic Functions

-- @QuickCheck QT = set of nat, set of bool;
f[@T]: seq of QT * nat -> QT
f(s, i) == s(i);

Proof Obligation 1: (Unproved)
f: sequence apply obligation in 'DEFAULT' (test.vdmsl) at line 4:16
(forall s:seq of (Q@QT), i:nat &

i in set inds s)

>qc 1

PO #1, FAILED in 0.003s: Counterexample: i =0, s = [], T = set of (nat)
f: sequence apply obligation in 'DEFAULT' (test.vdmsl) at line 4:16
(forall s:seq of (@T), i:nat &

1 in set inds s)

>qgr 1

=> print f[set of (nat)] ([], O)

Error 4064: Value 0 is not a natl in 'DEFAULT' (test.vdmsl) at line 4:16
4. f(s, i) == s(i);

QuickCheck Example - VDM-VSCode

%) File Edit Selection View Go Run Terminal Help [Extension Development Host] test.vdmsl - AlarmSL - Visual Studio Code OB Do - m] X
testvdmsl 4 X m .- Proof Obligations: AlarmSL
test.vdmsl > {} ULT> @ h Filter
1 types Expand all proof obligations Run QuickCheck
2 T = set of bool i I
3 inv t == card t = 3; -- Unsatisfiable 1
4 . id 1 kind name status
5 Q = nat LA total function DEFAULTT Provable
6 inv q == q > 10 and q < 100; P s
B f ti 0 2 invariant DEFAULTT Failed
8 gnaeions satisfiability
9 f: seq of nat -> nat a3 total function DEFAULT.Q Provable
10 f(s) == if s = [] then 0 else hd s; q
" E D 4 invariant DEFAULT.Q Provable
o s satisfiability
12 g: nat -> nat
13 g(a) == if a = 0 then 1 else a * g(a-1) o s non-empty DEFAULT.f Provable
14 measure a; sequence
15
Debug 0 6 total function DEFAULT.g.measure_g Provable
16 | |: real -> nat
: > o7 subtype DEFAULT. Maybe
/\ test.vdmsl 4 of 4 problems PR MIE ¢ a URP 9 vy
PO #9 counterexample: r = 1.25 (9000) v 8 recursive DEFAULT.g Maybe
function
17 h(r) ==
& L
18 pre r > 0; ™ 9 subtype DEFAULT.h Failed ‘
5 D Debug example
Proof obligation #9
variable * value
r 1.25
1

X ®0A5 Wo Ln16,Col5 Spaces:4 UTF8 LF VDM-SL (B

Performance

—

Specs # 50
PO # 4964
PROVABLE 878
by trivial 141
by finite 227
by witness 109
by direct 401
MAYBE 2077
FATILED (counterexample) 942
UNCHECKED 1057
TIMEOUT (5s) 10

PROVABLE 4.06 4.37
FAILED 10.41 3.1
MAYBE 45.5 49.28

51
2830
323
91
135
30
67
781
128
1598

1.7
11.2
13.34

13
435

114
8229
1238

235

378

146

479
2966
1075
2940

10

15.04%
2.86%
4.59%
1.77%
5.82%

36.04%

13.06%

35.73%
0.12%

100.00%

3.38
8.24
36.04

Future Directions

e More strategies?
o Translate the PO to SMT-LIB (perhaps via Dafny)?
o Strategies could return a proved status
o Maybe use ML to identify counterexamples?

e Improved analysis for UNCHECKED operation POs?
o Include relevant state in obligations
o VDM++ and VDM-RT are a challenge

e Better polymorphic type selection?
o Better checking of highly polymorphic specifications
o Sensibly selecting type parameters to check

THE TwOo TYPES OF SPEAKER
AT A CONFERENCE

MY TIME 1S LP

SO 1LL WRAP
'T uf nowW THANK
_ Y Oou

IM GOING TO KEEP
TALKIN(G UNTIL
SOMEONE TACKLES SLIDE
ME TO THE FLOOR as of ¥b

X,

@}wisteddoodles

